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Dürr A, Stevanin G, Cancel G, Duyckaerts C, Abbas N, Didier- mal dominant cerebellar ataxia type I maps to chromosome

14q24.3-qter: evidence for the existence of a fourth locus.jean O, Chneiweiss H, et al (1996) Spinocerebellar ataxia
3 and Machado-Joseph disease: clinical, molecular and neu- Am J Hum Genet 54:11–20
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clear mitochondrial genome is highly polymorphic significance to account for other independent variables
included in the model. Independent variables for each(Cann et al. 1987), and this variation also could contrib-

ute to the variation in complex traits in energy metabo- ANOVA were sex, age, the log of the body-mass index,
the presence of either diabetes or impaired glucose toler-lism (Johns 1996). Rare mutations in mtDNA produce

myopathies, encephalopathies, and ocular disorders, ance, and the mtDNA nt /16517 genotype. Transfor-
mation using the natural log for each variable resultedwhich can coexist with lactic acidosis or diabetes melli-

tus (Luft 1994; Shigenaga et al. 1994; Wallace 1994). in a distribution that was not significantly different from
normal. However, since the results were the sameWe hypothesized that common mtDNA variation was

associated with variation in quantitative metabolic phe- whether transformed or untransformed biochemical
variables were used, the results for the untransformednotypes. We studied variation in the mtDNA displace-

ment D-loop at nucleotide (nt) /16517 in the Oji-Cree variables are presented in table 1.
Subjects were classified by either the presence or thefrom the Sandy Lake Reserve in Ontario and evaluated

its relationship to intermediate traits involved in lipo- absence of the HaeIII site at mtDNA nt /16517 (table
1). The age, sex distribution, body mass, and proportionprotein and carbohydrate metabolism. This mtDNA

variant is part of all four founding Native American of diabetic subjects were not different between the geno-
types. Plasma concentrations of fasting and 2-h post-mtDNA haplotypes and is informative in most samples

from Native American populations (Torroni et al. prandial glucose, fasting insulin, and total and HDL-
cholesterol were not different between the genotypes.1993).

Sandy Lake, Ontario, is located 2,000 km northwest However, the mean fasting plasma triglyceride concen-
tration differed by Ç15%, according to the mtDNAof Toronto, in the subarctic boreal forest of central Can-

ada (Hanley et al. 1995). This isolated community is genotype (table 1).
In order to determine whether this association wasaccessible only by airplane during most of the year. Most

members of the community speak both English and Oji- independent of the presence of diabetes, a separate
ANOVA was performed post hoc in 332 nondiabeticCree, a member of the Algonquian family of languages.

The ancestors of the contemporary residents lived a no- subjects. This showed a significant association between
the mtDNA genotype and plasma triglycerides (P Åmadic, hunting-gathering subsistence. Within the last 70

years, the lifestyle of these people has become extremely .0060). A third ANOVA performed post hoc determined
that the plasma triglyceride concentration was not asso-sedentary, and the diet has become high in fat. Five

hundred twenty-two community members, 18 years of ciated with an interaction between diabetes and the
mtDNA genotype (P Å .84).age and older, were studied. Subjects were classified as

having either non–insulin-dependent diabetes mellitus Plasma triglyceride variation has genetic and environ-
mental determinants; estimates of heritability are withinor impaired glucose tolerance, on the basis of World

Health Organization criteria (WHO 1985). Blood sam- a range of 10%–65% (Boomsma et al. 1996). Plasma
triglyceride variation has been associated with variationples were obtained after an overnight fasting period of

8–12 h. The project was approved by the University of in such nuclear genes as LPL, APOC3, and APOC2
(Dammerman and Breslow 1995). Our findings suggestToronto Ethics Review Committee.

Blood was centrifuged at 2,000 rpm for 30 min, and that extranuclear mtDNA variation also could deter-
mine variation in plasma triglycerides. Thus, mtDNAthe plasma was stored at 070�C. Concentrations of fast-

ing glucose and of glucose 2 h after a standard glucose variation could be a possible source of variation in stud-
ies of complex metabolic phenotypes.load were determined as described elsewhere (Hanley et

al. 1995). Concentrations of fasting plasma lipids and The fatty acids derived from plasma triglycerides are
precursors of acyl CoA, which is used in the mitochon-fasting lipoproteins were determined as described else-

where (Hegele et al. 1995). Concentrations of fasting drial b-oxidation cycle of fatty-acid metabolism (Luft
1994; Shigenaga et al. 1994; Wallace 1994). Geneticplasma insulin were determined by radioimmunoassay

(Pharmacia). mtDNA nt /16517 HaeIII genotypes were variation affecting mitochondrial function thus could
affect utilization of fatty acids in b-oxidation. Differ-determined as described elsewhere (Torroni et al. 1993).

SAS (version 6.11; SAS Institute 1987) was used for ences in cellular utilization may alter the demand for
fatty acids from triglycerides and, in turn, may affect theall statistical comparisons. ANOVA was performed by

use of the general linear-models procedure, to determine plasma triglyceride concentration. Alternatively, genetic
variation affecting hepatic b-oxidation may alter thethe sources of variation for fasting plasma total choles-

terol, fasting triglycerides, fasting HDL-cholesterol, availability of hepatic free fatty acids that otherwise
would be channeled to the synthesis and secretion ofboth fasting and 2-h postprandial glucose, and fasting

insulin. F-tests were computed from the type III sums circulating triglyceride-containing lipoproteins.
The D-loop polymorphism also may have determinedof squares. This form of sums of squares is applicable

to unbalanced study designs and adjusts the level of directly the variation in plasma triglycerides. Since both
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Table 1

Phenotypic Characteristics (Least-Square Mean { Standard Error) of Sandy Lake Oji-Cree, Classified by mtDNA HaeIII Genotype at
Mitochondrial nt /16517

HaeIII Site Absent HaeIII Site Present P differencea

Total no./no. of females 229/133 293/160
Age (years) 35.3 { .97 36.3 { .85 NS (.44)
Presence of diabetes or impaired glucose tolerance 37.1% 33.1% NS (.40)
Body-mass index (kg/m2) 28.4 { .35 27.8 { .31 NS (.20)
Cholesterol (mmol/l) 4.77 { .064 4.79 { .061 NS (.80)
Triglycerides (mmol/l) 1.63 { .054 1.83 { .061 .0015
HDL-cholesterol (mmol/l) 1.22 { .022 1.20 { .020 NS (.24)
Glucose (mmol/l):

Fasting 8.24 { .17 8.32 { .16 NS (.65)
2-h postprandial 11.4 { .22 11.3 { .21 NS (.93)

Fasting plasma insulin (pmol/l) 147.8 { 7.93 161.8 { 7.44 NS (.12)

a Probability of a greater F-value between genotypic classes. NS Å not significant, with nominal P Å õ .05.

strands of mammalian mtDNA are transcribed from 1995). Thus, associations between some nuclear geno-
mic regions and quantitative traits may be mediatedpromoters situated in the D-loop region, this variant

could have affected mitochondrial function through an through the effect of mtDNA variation on mitochon-
drial function. Third, heteroplasmy of mtDNA in someeffect on gene expression. Alternatively, one or other

form of the mtDNA genotype at nt /16517, in the Oji- individuals may complicate the simple relationship be-
tween mtDNA variation and quantitative-trait varia-Cree, might have marked some mitochondrial lineages

that harbor other mutations that affect mitochondrial tion. Finally, mtDNA variation may contribute to the
disparities between studies of the nuclear genetic deter-function. While it also is possible that the admixture of

non-Amerindian mtDNA haplotypes might have ex- minants of complex quantitative traits.
plained the association, it must be noted that other al- ROBERT A. HEGELE,1 BERNARD ZINMAN,2 ANTHONY
leles that are prevalent in Europeans, such as the M235 J. G. HANLEY,2 STEWART HARRIS,3
allele of angiotensinogen and the T54 allele of the intes-
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tinal fatty-acid binding protein, are markedly less preva- 1Department of Medicine, St. Michael’s Hospital, and
lent in the Oji-Cree (R. A. Hegele, B. Zinman, A. J. G. 2Samuel Lunenfeld Research Institute and Department
Hanley, S. Harris, and P. W. Connelly, unpublished of Medicine, Mount Sinai Hospital, University of
data), providing indirect evidence against significant ad- Toronto, Toronto; and 3Thames Valley Family
mixture. Practice Research Unit, University of Western

The possibility that mtDNA variation could influence Ontario, London, Canada
complex human traits is important for several reasons.
First, some mtDNA mutations may select for individuals
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proposed by Berko and Swift (1987), now is assignedLander ES, Schork NJ (1994) Genetic dissection of complex
to a clinical phenotype of dystrophinopathy that is char-traits. Science 265:2037–2048
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gene; one mutation was a deletion that removed the9:146–151
muscle promoter, the first muscle exon, and part of theTorroni A, Schurr TG, Cabell MF, Brown MD, Neel JV,
first muscle intron (Muntoni et al. 1993), and the otherLarsen M, Smith DG, et al (1993) Asian affinities and conti-
was a point mutation in the 5� splice site of the firstnental radiation of the four founding Native American
muscle intron (Milasin et al. 1996). Together with ourmtDNAs. Am J Hum Genet 53:563–590

Wallace DC (1994) Mitochondrial DNA sequence variation report (Yoshida et al. 1993), these data indicate that the
in human evolution and disease. Proc Natl Acad Sci USA mutations at the 5� end of the DMD gene are associated
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the brain and Purkinje-cell promoters may maintain ade-
quate levels of dystrophin in the skeletal muscle of
XLDCM patients (Muntoni et al. 1995; Milasin et al.
1996). We also analyzed the expression of each form

Am. J. Hum. Genet. 60:1555–1558, 1997 of dystrophin transcripts in one atypical BMD patient
(patient 1) with a deletion affecting the first muscle exon
and the first muscle intron, in the DMD gene, and alsoUp-Regulation of the Brain and Purkinje-Cell Forms
in two BMD patients, with typical skeletal muscleof Dystrophin Transcripts, in Becker Muscular
involvement, having a deletion of either exons 45–47Dystrophy
(patient 2) or exons 45–48 (patient 3).

To the Editor: Patient 1, a 24-year-old man, showed slight calf pseu-
dohypertrophy and exertional cramping myalgia in theDuchenne muscular dystrophy (DMD) and Becker mus-

cular dystrophy (BMD) are allelic disorders caused by legs but not muscle atrophy or weakness. He was free
of cardiac symptoms; however, an electrocardiogrammutations in the DMD gene. Clinical pictures in BMD

patients are more heterogeneous than those in DMD (ECG) showed an increased R/S ratio in leads V1 and
V2 and prominent Q waves in leads II, III, and aVF. Anpatients; some patients with BMD exhibit dilated car-

diomyopathy in the absence of overt skeletal muscle echocardiogram (UCG) revealed diffuse hypokinesis of
the left ventricle (LV), with dilatation (LV end–diastolicatrophy or weakness. We previously reported two atypi-

cal BMD patients from two unrelated families, who dimension [LVDd] of 64 mm, LV end–systolic dimen-
sion [LVDs] of 52 mm, and fractional shortening [FS]showed severe dilated cardiomyopathy in their teens

without obvious skeletal muscle atrophy or weakness of 19%). Especially the posterior wall of the LV was
markedly thin and akinetic. The LV ejection fraction(Yoshida et al. 1993). Both patients showed slight calf

pseudohypertrophy, and one of them had exertional my- (EF; normal ú60%) was depressed severely (26%). Mild
mitral valve regurgitation also was observed. A 201Tlalgia. Molecular genetic analysis revealed a deletion
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